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Abstract: An arbitrary design implemented into a field-programmable gate array (FPGA). FPGA contains many logical 

blocks. Fault equivalence and fault dominance method are used to detect the fault with minimum time period. An 

approach provides transparent scan to share tests among different logic blocks whose primary inputs and outputs are 

included in scan chains even if the blocks have different numbers of state variables. The transparent-scan sequences 
based on tests for one logic block could detect faults in other logic blocks, with different numbers of state variable.  It 

uses n number of test configuration instead of 2n number of test configuration by test code algorithm. Transparent scan 

enhances the ability to produce a compact test set for a group of logic blocks. The procedure obtains a set of 

transparent-scan sequences for a group of logic blocks from compacted test sets for the logic blocks in the group. From 

this set, it chooses a subset that finds all the target faults, which are propagated by the complete set by using Modelsim 

and area is obtained by using the XILINX ISE 8.1 software. 
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I. INTRODUCTION 

An approach to test application called transparent scan, the 

scan-select and scan-chain inputs of a scan circuit are 

considered as inputs of the sequential circuit in the same 

way as the primary inputs, and the scan-chain outputs are 

considered as outputs in the same way as the primary 

outputs. A test sequence under transparent scan specifies 

the values for all the inputs without distinguishing 
between them based on the types. The corresponding 

output sequence specifies values for all the outputs, again, 

without distinguishing between them based on their types. 

Faults are allowed to be detected during all the clock 

cycles of a transparent-scan sequence. In general, fault 

coverage is computed by sequential fault simulation of the 

transparent-scan sequence. This view of the test 

application process does not require any modifications to 

the scan design or the design of the circuit.. test data 

compression that consists of test vector compression on 

the input side and response compaction on the output 

side[3]-[4]. Test vector compression has been an active 
area of research. testing system-on-chips by applying huge 

amounts of test data, which is stored in the test  memory 

and then transferred to the chip under test during test 

application[12]. Therefore, practical techniques, such as 

test compaction and compression, are used to reduce the 

amount of test data. The problem of compacting a set of 

test sequences for sequential circuits was modeled with the 

help of a covering matrix, where the test sequences can be 

modeled as columns with variable cost to reflect the cost 

(number of vectors) of covering selected subsets of circuit 

faults [6]. D-algorithm that is shown to be ineffective for 
the class of combinational logic circuits that is used to 

implement error correction and translation (ECAT) 

functions [11]. PODEM algorithm is a new test generation 

algorithm for combinational logic circuits. More patterns 

may be obtained than from standard ATPG programs [15].  

 

However, fault coverage is much higher in all irredundant 

multiple as well as single stuck faults are detected and 

rectified. The test patterns are easily generated 

algorithmically either by program or hardware  and  the 

application of set covering models to the compaction of 

test sets, which can be used with heuristic test set 

compaction procedure[8]. For this purpose, recent and 
highly effective set covering algorithms are used. 

Compaction refers to a reduction in the test application 

timing, while at-speed testing points to the application of 

primary input sequences that contribute to the detection of 

delay defects [1]. The proposed procedure generates an 

initial test set that has a low test application time and 

consists of long sequences of primary input vectors 

applied consecutively, Experimental evidence suggests 

that the size of computed test sets can often be reduced by 

using set covering models and algorithms[14]. The test 

compression method consumes large area and the fault 

identification is a time consuming process is observed 
from the previous techniques. All of the previous works 

are mainly focused on test compression, to get the 

minimum transition in the fault dictionary. 

In this case, the scan-select and scan-chain input 

sequences are such that the conventional test set is applied 

to the circuit by applying the transparent scan sequence. 

When a logic block is embedded in a designing, access to 

its primary inputs and primary outputs, as well as the state 

variables, for the purpose of test application may be 

available only serially through scan chains. Fig. 1 

illustrates such a logic block Bi with a single scan chain. 
The scan chain is marked with dashed lines. The scan-

select input of Bi is denoted by SCSELi, its scan-chain 

input by SCINPi, and its scan-chain output by SCOUTi. 

Under the model of Fig. 1, a transparent-scan sequence for 

Bi specifies values only for SCSELi and SCINPi. The 
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output sequence specifies only the corresponding values of  

SCOUTi. 

.     
Fig.  1. Logic block of test compaction 

II. PROPOSED METHOD 

Transparent-scan sequences were allowed to assign 
arbitrary values to the scan-select input. In this case, the 

scan-select and scan-chain input sequences are such that 

the conventional test set is applied to the circuit by 

applying the transparent scan sequence. However, the 

scan-select sequence of the final transparent-scan 

sequence obtained is allowed to be different from the 

initial sequence. The scan-chain input and primary input 

sequences are also allowed to change relative to the initial 

sequences. The goal is to achieve test compaction for a 

single logic block using a single transparent scan 

sequence, and changing the sequences of the various 
inputs contributes to test compaction. 

TABLE I 

 TRANSPARENT SCAN SEQUENCES  

u Ti,0 (u) Ti,1(u) Ti,2(u) 

0 11 11 11 

1 11 10 10 

2 10 11 10 

3 10 10 11 

4 0x 0x 0x 

5 1x 1x 1x 

6 1x 1x 1x 

7 1x 1x 1x 

8 1x 1x 1x 

 

The transparent-scan sequences shown in Table I apply 

these tests to the circuit. Considering si, 0 = 0011, clock 

cycles 0 to 3 of Ti, 0 are scan clock cycles, and they have 

values Ti, 0(u, 0) = 1 for 0 ≤ u ≤ 3. These clock cycles are 

used for loading the test 0011 into the scan chain. The 

values of the scan-chain input, Ti, 0(u, 1) for 0 ≤ u ≤ 3, 

correspond to this test assuming that scan chains are 
shifted to the right. Clock cycle 4 is a functional clock 

cycle with Ti, 0(4, 0) = 0. This clock cycle is used for 

capturing the circuit response to 0011 in the scan chain. 

The scan-chain input value Ti,0(u, 1) can be determined 

arbitrarily, and it is marked with an “x” in Table I. Clock 

cycles 5 to 8 are scan clock cycles with Ti,0(u, 0) = 1 for 5 

≤ u ≤ 8. They allow the response of the circuit to 0011 to 

be scanned out and observed. The values of the scan-chain 

input Ti,0(u, 1), for 5 ≤ u ≤ 8, can be determined 

arbitrarily. They can be used for overlapping the test with 

the next test. For example, a two-pattern broadside test for 

a logic block with ki state variables would have two 

functional clock cycles between two scan subsequences of 

length ki. 

For the transparent-scan sequences considered in this 

paper, it is also possible to use combinational fault 

simulation instead of sequential fault simulation. This can 

be achieved by applying the following process. 

     1) The present state for the functional clock cycle can 
be computed without logic or fault simulation based on the 

values of the scan-chain input during the scan clock cycles 

that define the scan-in operation at the beginning of the 

test. 

     2) Combinational fault simulation is required for the 

functional clock cycle. 

     3) Based on the fault effects that are propagated to the 

flipflops during the functional clock cycle, and the number 

of scan clock cycles for the scan-out operation at the end 

of the test, it is possible to compute which fault effects 

will reach an output. 
The size of the test set impacts the test storage 

requirements and time for test application, especially for 

the circuits using scan design. The test application time is 

directly proportional to the product of the number of test 

patterns and the number of scan cells in the longest scan 

chain. This necessitates generation of small test sets. The 

complexity of the compaction process plays an important 

role in test compaction. There are computation-intensive 

procedures proposed in the literature that produce minimal 

size test sets close to the lower bound. For instance, in 

tests are generated repeatedly which can detect several 

faults at the same time so as to replace previous tests 
found. 

A.  Static Compaction 

Static compaction is applied as a post processing step to 

already generated test sets, to reduce the test set size 

further and therefore is independent of the test generation 

method. Static compaction is performed after all the 
patterns are generated and this is independent of test 

generation. The complexity of the compaction process 

plays an important role in test compaction. There are 

computation-intensive procedures proposed in the 

literature that produce minimal size test sets close to the 

lower bound. For instance, in tests are generated 

repeatedly which can detect several faults at the 

Same time so as to replace previous faults found. Though 

these methods produce small test sets, they are not suitable 

to large designs. 

B. Dynamic Compaction 

Dynamic compaction is interlinked within the test 

generation process where a test cube is generated for a 

fault and the generated test cube is added as constraints to 

the next targeted fault. The advantage of dynamic 

compaction and static compaction is that it reduces the 

time required for post-processing step for compacting test 
patterns. The dynamic compaction begins with a fault 

which is on top of previously 

Ordered fault list, called as primary fault. The primary 

fault is targeted for test generation and if a test is 

generated for the fault, another fault called secondary fault 
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is picked and a test generation for the fault is attempted 

The test generation tries to generate a test for the 

secondary fault with the primary input values and scan cell 

values specified by previously generated test vector. 

Test generation under the proposed approach, which 

eliminates the distinction between scan operations and 

application of primary input vectors, can be done as 
follows. The circuit for which test generation is carried out 

is Cscan. This circuit has two extra primary inputs 

compared to the original circuit C: the scan-in input 

scan_inp, and the scan-select input scan_sel. It also has an 

extra primary output, the scan output scan_out.  The 

procedure will produce a test sequence where scan_sel and 

scan_inp are used as conventional primary inputs, and 

fault effects may be observed on scan_out. An example of 

such a test sequence is shown in Table II. 

TABLE II 

 TEST SEQUENCE 

Sequence a1 a2 a3 a4 Scan_sel Scan_inp 

0 0 0 1 0 0 0 

1 1 1 0 1 0 0 

2 0 0 1 0 0 0 

3 0 0 0 0 0 0 

4 0 0 0 1 0 0 

5 0 0 0 0 1 0 

6 0 0 0 0 0 0 

7 0 0 0 0 1 0 

8 0 0 0 1 0 0 

9 1 0 0 0 0 0 

10 0 0 0 1 0 0 

11 0 0 0 0 0 1 

12 0 0 0 1 0 0 

13 0 0 0 0 1 0 

14 0 0 0 0 1 1 

15 0 0 0 1 0 0 

16 1 0 0 0 1 0 

17 0 0 0 1 0 0 

18 0 0 0 0 1 1 

19 0 0 0 0 1 0 

20 0 0 0 0 0 0 

21 0 1 0 0 0 0 

22 0 0 1 0 0 0 

23 1 0 0 1 0 0 

24 0 0 0 0 0 0 

 

This sequence was generated for s 27scan, which is the 

scan version of ISCAS-89 benchmark circuit s 27. The 

circuit has four primary inputs labeled a1,a2,a3,a4. It has 

three state variables. It is interesting to note that scan is 

applied for a single time unit at time unit 5, 7 and 16. In 

addition, it is applied for two consecutive time units at 

time units 13, 14 and 18, 19. Thus, all the scan operations 
are limited scan operations with one and two shifts of the 

scan chain, and there is never a complete scan operation 

that takes three shifts of the scan chain. 

 

C. Fault Identification Method 

In order to detect all faults in the fault list, faults must be 

sensitized using a set of single-term functions and test 

vectors shown in Fig. 2. These single-term functions are 

implemented in all LUTs used in the user design. The 

single-term functions implemented in the user LUTs 

correspond to a test configuration which detect the 

interconnect faults sensitized in that test configuration. 

The objective is to come up with a minimum number of 

test configurations such that all faults in the fault list are 

sensitized and, hence, detected in at least one test 

configuration.  Testing for bridging faults has always been 

a challenging issue, particularly for ASICs. This is mainly 
due to the fact that finding an appropriate fault list for 

bridging faults is not as straightforward as that for stuck-at 

faults. The number of all possible single stuck-at faults in 

a circuit is linear with the size of the circuit whereas the 

number of all pairwise bridging faults is quadratic with the 

size of the circuit. Activating all possible faults (stuck-at, 

open, and pairwise bridging faults) for M nets performed 

using only[log2(M+2)] test vectors. These vectors are 

columns of binary representations of numbers 1 to   using 

bits and called test codes. 

 

Fig. 2.  Logarithmic test set to activate all faults for six 
wires 

D. Controllability 

Controllability refers to the ability to apply test patterns to 

the inputs of a sub circuit via the primary inputs of the 

circuit. To enhance the controllability of a circuit, the state 

that cannot be controlled from its primary inputs has to be 

reduced. These conditions are ensured by the enforcement 

of certain design rules, particularly pertaining to the clocks 

that evoke state changes in the network. Scan refers to the 

ability to shift into or out of any state of the network. 

E.  Observability 

Observability refers to the ability to observe the response 

of a sub circuit via the primary outputs of the circuit or at 

some other output points. To enhance the Observability, 

output of the gate must be separately observed. Latches 

are used in pairs; each has a normal input data, output data 

and clock for system operation. For testing operation, the 

two latches form a master/slave pair with one scan input 

and scan output and non-overlapping scan clocks A and B 
which are held low during system operation but cause the 

scan data to be latched when high pulsed during scan. If 

the trace is shorted to another signal or if the trace signal is 

open, the correct signal value does not show up at the 

destination pin, indicating a fault. The purpose of the 

testing is to identify the presence of the defects in the 

circuit. By understanding that, the circuit has defects if it 

observes incorrect behavior. Fault simulation has to 

determine the fault coverage for a specified set of test 
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vectors applied to a CUT, fault simulation is carried out. 

For each fault expected in the CUT (excluding redundant 

faults), the output produced when a test vector is applied 

to a faulty circuit differs from the output produced in a 

fault –free circuit. Thus, fault simulation that can be used 

for this purpose, some commercial and others academic. It 

then selects a subset of these sequences that is sufficient 
for detecting all the target faults that are detected by S0, 

S1,. . .,  Sn-1. For 0 ≤ i < n and for     0 ≤ j < mi, the 

procedure translates si, j into a transparent-scan sequence 

Ti,j as described in the previous section. It then adds Ti,j to 

T . It is possible to use a set covering procedure in order to 

select a subset of T that detects all the faults in F. 

However, a set covering procedure requires information 

about all the sequences from T that detect every fault in F. 

In the context of transparent scan, the two steps proceed as 

follows. 

Step 1 selects a subset Tsel1 ⊆ T by identifying faults from 
F that are detected by unique sequences in T . If a fault f ∈  

F has only one transparent-scan sequence Ti,j∈  T that 

detects it,       T i,j must be included in the selected subset 

of transparent scan sequences. In this case, Ti,j is included 

in Tsel1. Step 2 selects additional transparent-scan 

sequences as necessary to produce a subset Tsel2 that 

detects all the faults in F. The details of the two steps are 

described next. Step 1 performs two-detection fault 

simulation of the faults in F under the transparent-scan 

sequences in T. The number of detections of a fault f ∈  F 

is equal to the number of sequences from T that detect the 

fault. The two-detection fault simulation procedure drops a 
fault from further simulation after it finds two transparent-

scan sequences in T that detect the fault. It stores the 

number of times a fault f ∈  F is detected during this 

process in a variable denoted by ndet (f). It stores the 

index of the first transparent-scan sequence that detects a 

fault f ∈  F in a variable denoted by first (f). If, at the end 

of this process, a fault f ∈  F has ndet (f) = 1, the sequence 

with index first (f) must be selected. This sequence is 

included in Tsel1. 

The expectation is that the sequences in Tsel1 will detect 

most of the faults in F. Tsel1 is guaranteed to detect a fault 
f with ndet (f) = 1. For a fault f with ndet (f) = 2, there are 

two or more options for transparent-scan sequences in T 

that detect it. Such a fault is likely to be detected by Tsel1. 

With a small number of faults that are not detected by 

Tsel1, Step 2 uses fault simulation with fault dropping to 

select additional sequences so as to detect all the faults in 

F 

Step 2 starts by assigning Tsel2 = Tsel1. It performs fault 

simulation with fault dropping of F under the transparent-

scan sequences in Tsel2 in order to remove from 

consideration faults that are already detected. It then 

performs fault simulation with fault dropping of F under 
T−Tsel2.  A fault     f ∈  F is detected by a transparent-scan 

sequence vectors as a logic module.    

F.  Fault Equivalence Method 

It is possible that two or more faults produce same faulty 

behavior for all input patterns are called equivalent faults. 
Any single fault from the set of equivalent fault set can 

represent the whole set. In this case, much less than k×n 

fault tests are required for a circuit with n signal line 

removing equivalent faults from entire set of faults is 

called fault collapsing that significantly decreases the 

number of faults to check. 

G.  Fault Dominance Method 

Fault F is called dominant to F' if all tests of F' detects F. 

In this case, F can be removed from the fault list. If F 

dominates F' and F' dominates F, then these two faults are 

equivalent. Two faults are functionally equivalent if they 

produce identical faulty functions or two faults are 

functionally equivalent if those cannot distinguish them at 

primary outputs (PO) with any input test vector. For 
instance, tests are generated repeatedly which can detect 

several faults at the same time so as to replace previous 

faults found. 

III. SIMULATION RESULTS  

A.  Fault Equivalence Output for Test Compaction 

 
Fig. 3. Fault Equivalence Output for Test Compaction 

Figure 3 finds the total numbers of faults that are present 

in the circuit. This method increases the fault identification 

and the total number of faults can be identified. This test 

compaction also comprises of two set of fault coverage. 

Here , both the fault coverage identifies the equal number 

of faults present in the circuit. 

B.   Fault Dominance Output for Test Compaction 

 
Fig. 4. Fault Dominance Output for Test Compaction 

Figure 4 shows the faults that are dominated by another set 

of fault in the test compaction. There are two set of fault 

coverage in the test compaction. One set of fault coverage 

is for the logic block used and another set of fault 

coverage is for the dominance circuit. Second set of           

fault coverage identifies the total number of fault within 

minimum time period. 
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C.   Fault identification in s27 benchmark circuit  

 

Fig. 5.  Fault Identification Output in s27 Benchmark Circuit 

Figure 5 shows the result of the fault identification of s27 

benchmark circuit. Stuck –at fault in the circuit can be  

identified by the values stored in the latch. Both the Stuck 

–at 1 and Stuck – at 0 can be identified. Stuck –at 1 is 

obtained for the values of latch as 1 and Stuck –at 0 is 

obtained for the values of latch as 0 

D.   Fault identification in s208 benchmark circuit  

 

Fig. 6. Fault Identification Output in s208 Benchmark Circuit 

Figure 6 shows the result of s208 benchmark circuit from 

which the fault coverage is obtained. Comparing to the 

previous techniques fault coverage of 61 is obtained in this 

benchmark circuit with minimum number of test vectors is 
obtained. The fault coverage value is obtained during the 

transition in the LFSR values. During the linear 

propagation of the shift register, fault coverage is 

identified. 

E.    Comparison of Fault Coverage and Test Vectors for                

Different Methods: 

Table III shows comparison of test vector and fault 

coverage using test code algorithm. The proposed 

technique uses test code algorithm method with reduced 

number of test vectors and also it provide high fault 

coverage compare to the existing method.  

 

Fault Equivalence and Dominance method is 20% more 

efficient than PODEM and Boolean Difference method. 

For the proposed method, by using the fault equivalence 

and fault dominance method the number of test vectors 

used is minimum and the fault coverage is high. From the 
comparison, Boolean Difference method is 12% efficient 

than PODEM algorithm, Fault Equivalence and 

Dominance method is 20% more efficient than PODEM 

and Boolean Difference method. 

TABLE III 

 COMPARISON OF FAULT COVERAGE AND TEST VECTORS FOR DIFFERENT 

METHODS 

Benchmark  

 

 

circuits 

Boolean 

Difference 

Method [El-

Maleh 

A. and Osais 

(2004)] 

Fault 

Equivalence and 

Dominance 

Method[PHASE 

–I WORK] 

Fault 

Identification 

Method           

[PHASE –II  

WORK] 

Test 

Vector 

 

FC Test 

Vector 

 

FC Test 

Vector 

 

FC 

s1428 100 50 120 52 120 64 

s298 160 61 160 63 150 70 

s27 120 50 100 50 100 67 

s208 100 52 100 61 90 72 

s27-s208 110 60 80 69 80 81 

IV. CONCLUSION 
 

Fault identification method used in the test compaction, it 

minimizes the total number of test vectors used in the 

circuit. This project describes a test compaction procedure 

under transparent scan for groups of logic blocks whose 
primary inputs and outputs are scanned. Using test code 

algorithm it reduces 2n number of test vector sequence to n 

number of test vector. Experimental results showed that 

transparent-scan sequences based on tests for one logic 

block could detect faults in other logic blocks, with 

different number of state variables. This allowed a reduced 

number of transparent-scan sequences to be used for the 

group. Transparent-scan sequences of logic blocks with 

higher numbers of state variables typically detected faults 

of logic block with smaller numbers of state variables. 

This was the main contributor to the reduction in the 

number of transparent scan sequences for the group using 
test code algorithm. 
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